

Sulfide-Based Solid Electrolytes for Solid-State Li Batteries

Jagjit Nanda, Ethan C. Self, Guang Yang, Frank M. Delnick

Email: nandaj@ornl.gov

Phone: 865-241-8361

Oak Ridge National Laboratory

2020 U.S. DOE Vehicle Technologies
Office Annual Merit Review

June 1- 4, 2020 Project ID: BAT422

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Project start date: Oct. 1, 2019
- Project end date: Sept. 30, 2022
- Percent complete: 30

Barriers

Performance: (i) Cell energy density, 500 Wh/Kg -1000 cycles (ii) Stable ionic conductivity > 10⁻⁴

S/cm at room temperature

Interfacial Stability: Chemical and

electrochemical stability 0 – 4.5 V wrt Li⁰/Li⁺

Current Density: 2 mA/cm² or higher

Budget

• FY20 Funding: \$ 500K

Partners/Collaborators

- Pacific Northwest National Laboratory
 Electron Microscopy –Chongmin Wang
- Virginia Commonwealth University
 Interface Modelling Prof. Puru Jena
- Hunter's College, New York
 NMR Studies Prof. Steve Greenbaum

Relevance

Impact

Solid electrolytes with high Li⁺ conductivity and stable interfaces are critical to the development of all solidstate batteries that meets EV goals in terms of energy density and life

Objectives

- Synthesize sulfide-based superionic conductors and evaluate their chemical and interfacial stability
- Reduce the area specific resistance (ASR) between sulfide solid electrolytes (SEs) and a Li-ion cathode
- Meet the electrochemical stability and critical current density goals for all-solid-state batteries

Cathode-Solid Electrolyte Interfaces:

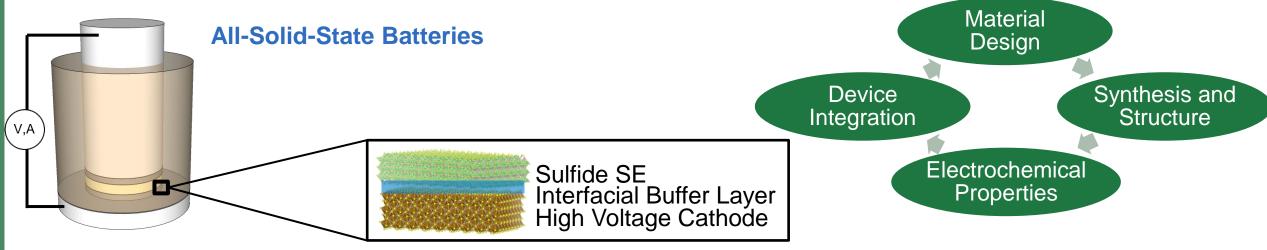
- Utilize ex-situ and in-situ Raman, NMR, X-ray, and electron microscopy methods to characterize cathode/SE interfaces and correlate with electrochemical performance
- Develop coating strategies to improve interfacial compatibility between sulfide-based SEs and high voltage cathodes (e.g., Ni-rich NMC)

Relevance to VTO Mission

R&D effort on solid state electrolytes and interfaces are critical to meet the VTO's long term goal of attaining cell energy density \geq 500 Wh/Kg and 1000 EV cycles.

Milestones

Due Date	Description	Status
12/31/2019 (Q1)	Identify synthesis, doping, and processing conditions to prepare Li ₃ PS ₄ -based SEs with a Li ⁺ conductivity exceeding 10 ⁻⁴ S/cm	Complete
03/31/2020 (Q2)	Develop binder systems for Li ₃ PS ₄ family of SEs for improving processability and stability at the Li-metal and cathode interfaces	Complete
06/30/2020 (Q3)	Measure and compare the Li ⁺ diffusion coefficient for pristine Li ₃ PS ₄ and substituted Li ₃ PS ₄ SEs using solid-state NMR	In progress
09/30/2020 (Q4)	Undertake <i>in-situ</i> Raman and electron microscopy including cryo-TEM for characterizing Li ₃ PS ₄ and cathode-Li ₃ PS ₄ interfaces as part of determining the ASR	In progress


Li⁺ conducting sulfide-based solid electrolytes (SEs) have several advantages compared to their oxide counterparts

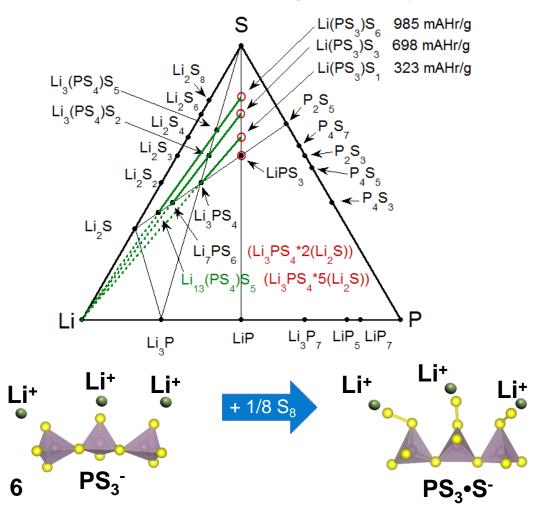
Sulfide SE Advantages

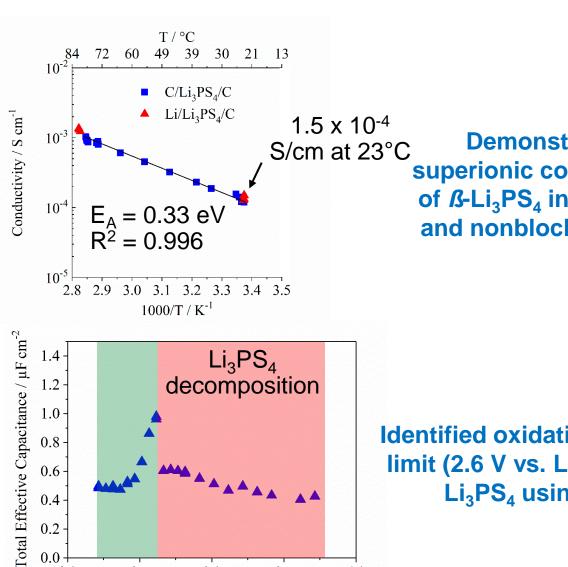
- Superionic conductivity (≥ 10⁻⁴ S/cm at 25°C)
- Scalable, low temperature synthesis: solventmediated routes enable control over composition, structure, and crystallinity
- Soft mechanical properties enable cold-pressing
- Earth abundant and potentially low cost

Challenges

- Chemically unstable in air
- Narrow electrochemical stability window
- Integration into solid-state batteries
 - Cathode/electrolyte interface
 - Li/electrolyte interface

Key Project Goals:


- 1. Synthesize superionic sulfide SEs using scalable, solvent-mediated routes
- 2. Develop **sulfide/polymer composite SEs** which can be tape cast into layers <30 μm thick.
- 3. Improve cathode/sulfide SE compatibility via interfacial buffer layers.


Efforts in FY19 focused on solvent-mediated synthesis and characterization of *B*-Li₃PS₄ solid electrolyte and sulfur-catenated thiophosphate cathodes.

2.0

2.5

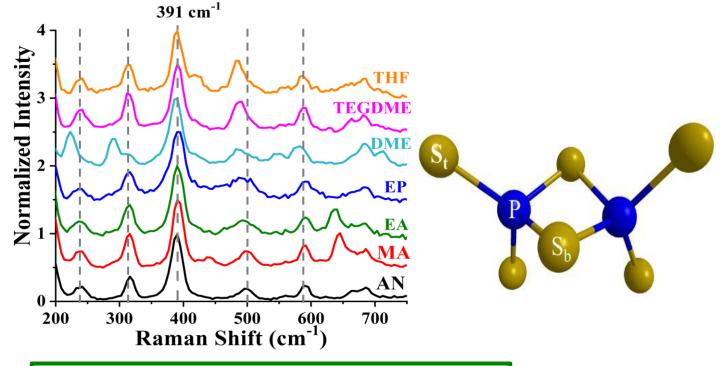
High Capacity Sulfur-Catenated Cathodes Based on Phase Diagram Analysis

3.5

3.0

Potential / V vs. Li/Li⁺

Demonstrated superionic conductivity of B-Li₃PS₄ in blocking and nonblocking cells


Identified oxidative stability limit (2.6 V vs. Li/Li+) for B-Li₃PS₄ using EIS

Li₂P₂S₆ is an important intermediate in the solvent-mediated synthesis of lithium thiophosphate superionic conductors. Understanding formation of this species is critical for optimizing synthesis route.

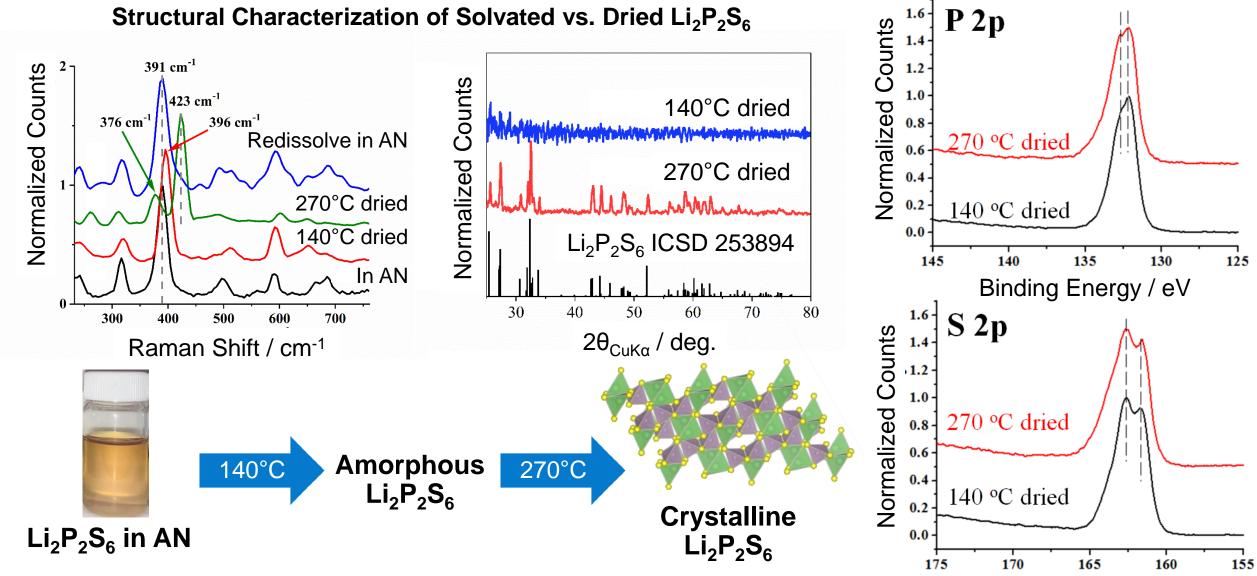
Experimental Details

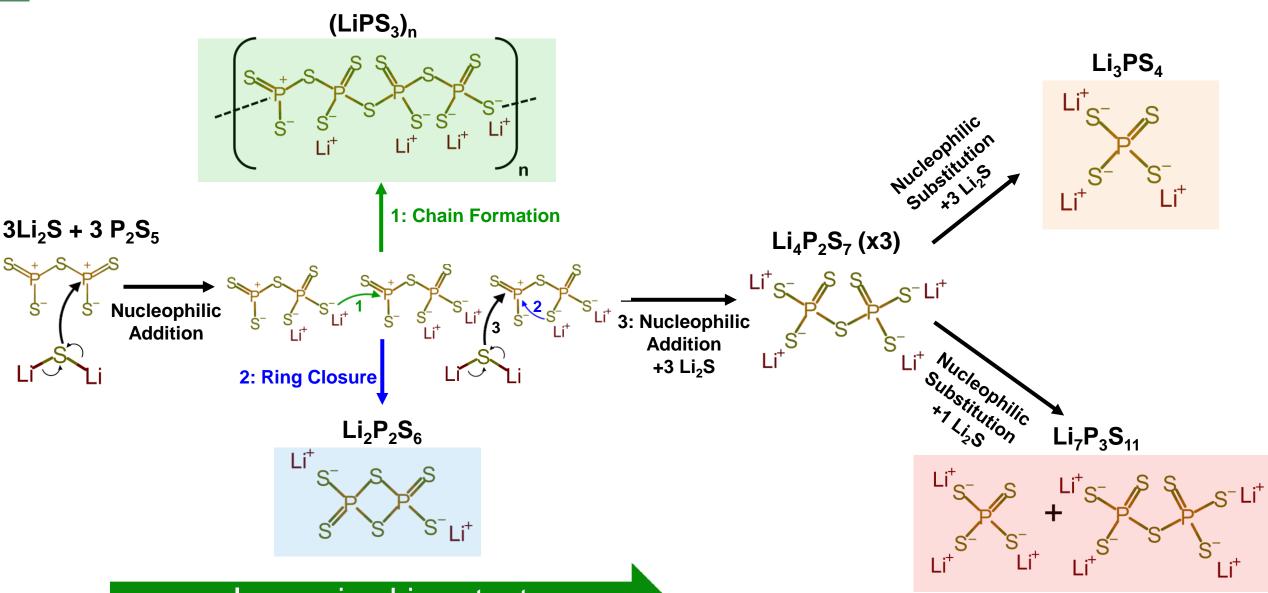
- Li₂S + P₂S₅ (1:1 molar ratio) **dissolved** in various solvents
- All synthesis/characterization performed under Ar

Raman spectra of Li₂P₂S₆ in Various Solvents

Structure of solvated Li₂P₂S₆ is virtually identical in a wide range of solvents.

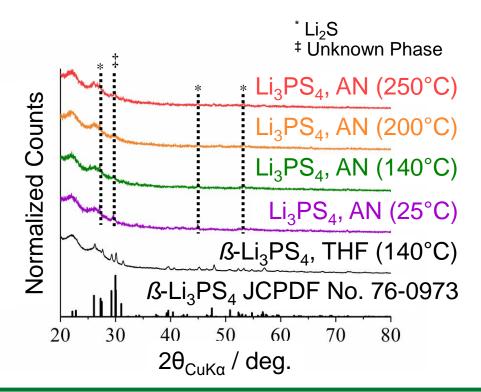
Li₂P₂S₆-based Solutions

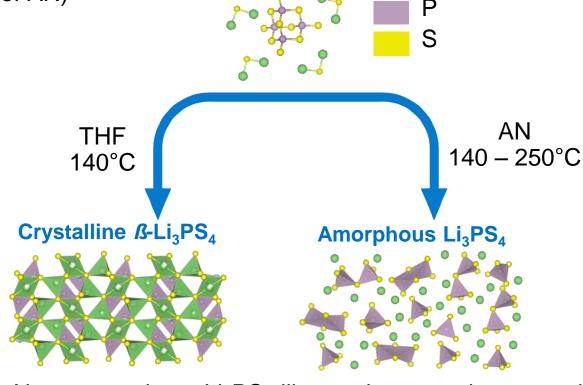

THE DME 2EGDME TEGDME AN MA	THF	DME	2EGDME	TEGDME	AN	MA
-----------------------------	-----	-----	--------	--------	----	----


Raman Shift / cm ⁻¹	Peak Assignment
239	$\delta(S_b - P - S_t) + \delta(S_t - P - S_t)$
315	$v(P-P)+\delta(S_b-P-S_t)+v(P-S_t)$
391	$v(P-S_b)+v(P-S_t)$
423	$v(P-S_b)$
500	v(P-S _b)
591	$v(P-S_b)+v(P-S_t)+v(P-P)$
687	$V(P-S_t)+\delta(S_t-P-S_t)$

Binding Energy / eV

By tuning synthesis conditions, a range of lithium thiophosphate products can be prepared, including solvated complexes, glassy, and/or crystalline materials.


A general reaction mechanism for the solvent-mediated synthesis of lithium thiophosphates is proposed. For a given solvent, the distribution of products depends on relative reaction rates and stability of intermediates.

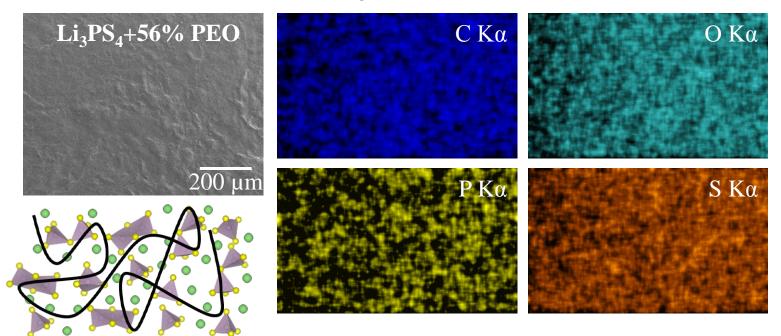


The structure of Li₃PS₄ prepared through solvent-mediated synthesis routes is highly sensitive to the solvent and thermal treatment. Both crystalline and amorphous materials can be prepared.

Synthesis Details

- Blend Li₂S + P₂S₅ (3/1 molar ratio) in solvent (THF or AN)
- Dry at 25-45°C under vacuum
- Anneal at 140-250°C under Ar

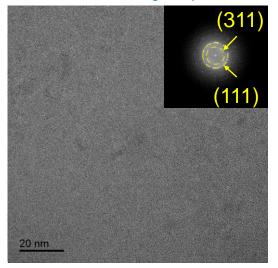
 $6Li_2S + P_4S_{10}$

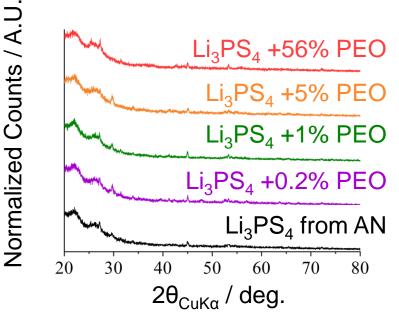

Note: amorphous Li_3PS_4 -like product contains several polyanionic groups including PS_4^{3-} , $\text{P}_2\text{S}_6^{2-}$, and $\text{P}_2\text{S}_7^{4-}$.

- 1. In THF, crystalline \mathcal{B} -Li₃PS₄ forms after annealing at 140°C, but acetonitrile solvent results in amorphous product.
- 2. Compared to polycrystalline *B*-Li₃PS₄, amorphous Li₃PS₄ may promote more uniform Li plating/stripping in SSBs.

A new class of composite SEs containing amorphous Li₃PS₄ synthesized *in-situ* in the presence of a PEO binder was developed. Structure, conductivity, and processability of these materials were studied extensively in FY20. **Cryc**

Experimental Details

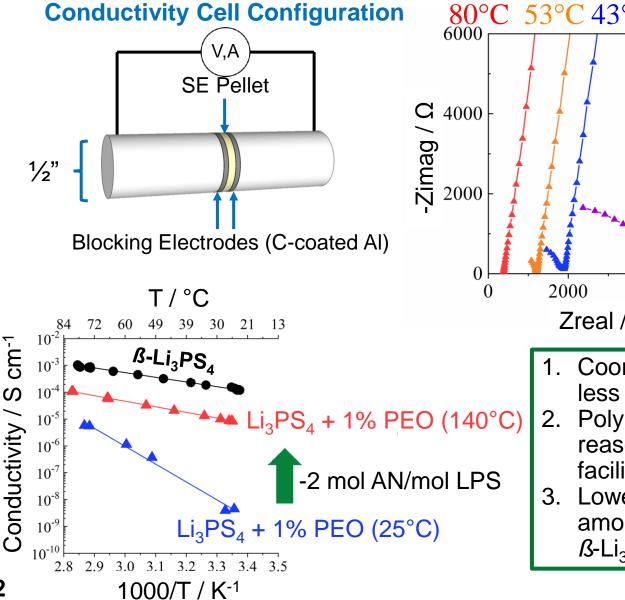

- Blend $\text{Li}_2\text{S} + \text{P}_2\text{S}_5 + \text{PEO}$ (600 kDa, 0.2 56 wt%) in acetonitrile
- Dry at 25-45°C under vacuum
- Anneal at 140-250°C → synthesize Li₃PS₄ in-situ
- All work performed under argon

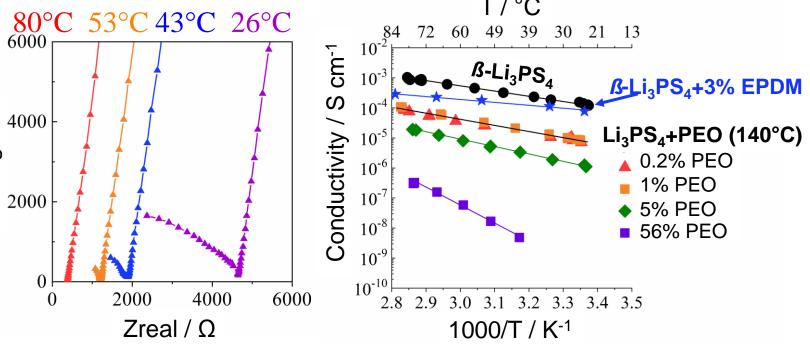


- 1. In-situ synthesis approach yields intimate blend of Li₃PS₄ and binder.
- 2. Li₃PS₄ is almost entirely amorphous except for trace amounts of crystalline Li₂S which indicates material is slightly Li deficient (Li_{3-x}PS₄)

Technical Accomplishment

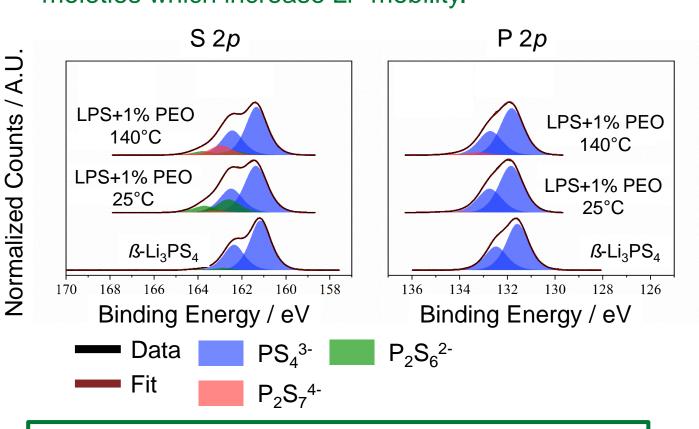
Cryo-TEM of Li₃PS₄+1% PEO

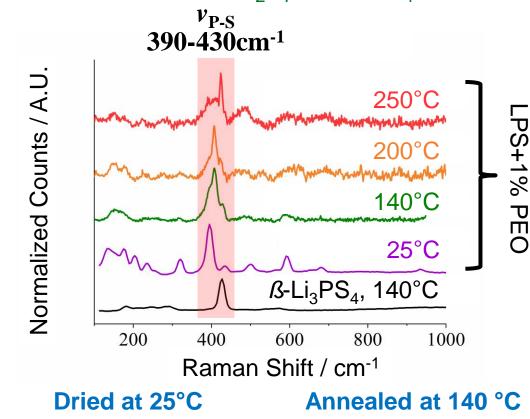


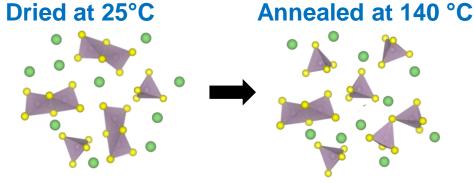


11

E. C. Self*, Z. D. Hood*, et al. 2020 (Under Review)


Li⁺ conductivity of Li₃PS₄/PEO composites is highly dependent on the thermal treatment and polymer binder content. Moderate conductivities up to 1x10⁻⁴ S/cm (80°C) were demonstrated.

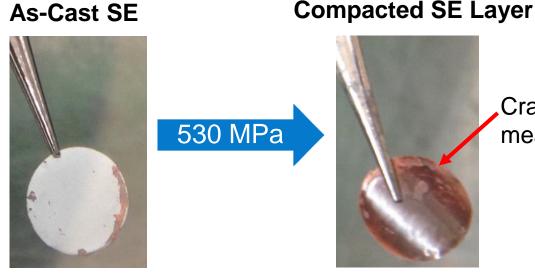



- 1. Coordinated acetonitrile hinders Li⁺ mobility and provides a less favorable energy landscape for long-range Li⁺ migration.
- Polymer content should be limited to ca. 1 5 wt.% to ensure reasonable Li⁺ conductivity while providing enough binder to facilitate processing.
- 3. Lower conductivity of Li₃PS₄/PEO composites is due to amorphous nature of SE. Addition of 3 wt% EPDM binder to \(\mathcal{B}\)-Li₃PS₄ had only a minor impact on Li⁺ conductivity.

Effects of annealing temperature on microstructure of amorphous Li_3PS_4 was studied using various spectroscopic techniques. High temperature treatment promotes formation of $P_2S_7^{4-}$ and PS_4^{3-} moieties which increase Li⁺ mobility.

- 1. Amorphous Li₃PS₄ dried at 25°C contained significant amount of P₂S₆²⁻ polyanions which resulted in poor Li⁺ conductivity.
- 2. PS_4^{3-} and $P_2S_7^{4-}$ content increases at $T \ge 140^{\circ}C$
- 3. Thermal decomposition occurs ~250°C

 $\sigma_{\text{Li+.} 25^{\circ}\text{C}}$: 4.5 x 10⁻⁹ S/cm


8.4 x 10⁻⁶ S/cm

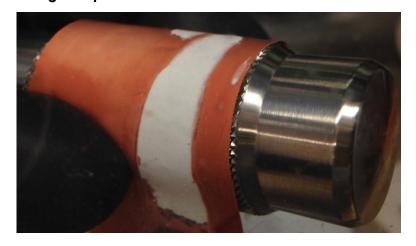
Slurry cast amorphous Li₃PS₄/PEO layers (<50µm) were fabricated, and optimization of SE and slurry composition is in progress

Experimental Details

- Amorphous Li₃PS₄ + 5% PEO dispersed in acetonitrile
- 18 wt% solids in slurry
- Cast onto 15 µm Cu foil inside Ar glovebox
- Dried film at room temperature under vacuum overnight

i vacaam overnight

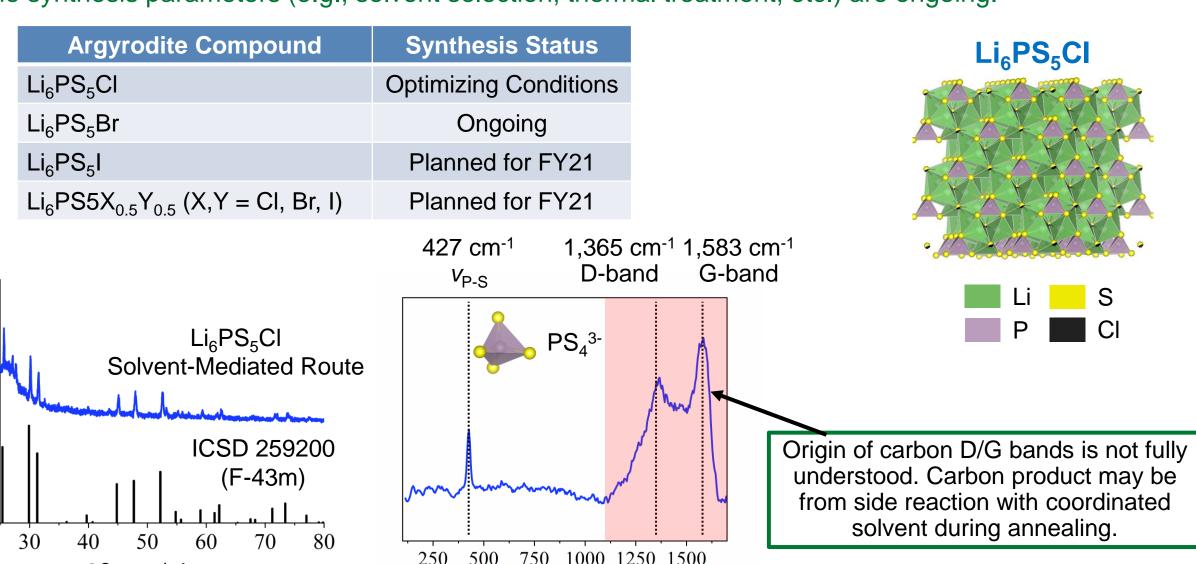
Target: Thin, flexible SE films for SSBs


a-Li₃PS₄/PEO film Substrate **}** 10-25 μm

Substrate should be either:

- (i) Removable (freestanding LPS/PEO film)
- (ii) Electrode layer for SSB assembly

Cracks/flaking cause short-circuit during conductivity measurements. More optimization required.


Li₃PS₄ + 5% PEO Cast on Cu Foil

Li₃PS₄+5% PEO Porosity* **Thickness** Loading **Density** (mg/cm²) (g/cm^3) (µm) (%) As-Cast 32 1.82 0.57 70 Compacted 10 1.82 1.82 3

^{*} Calculated assuming theoretical density 1.87 g/cm³ (\$\mathcal{B}\$-Li₃PS₄)

A model argyrodite solid electrolyte (Li₆PS₅Cl) was also synthesized using a solvent-mediated route. The material had the desired cubic structure along with an amorphous carbon phase. Optimization of the synthesis parameters (e.g., solvent selection, thermal treatment, etc.) are ongoing.

Raman Shift / cm⁻¹

 $2\theta_{\text{CuK}\alpha}$ / deg.

Normalized Counts

Response to Reviewers Comments

This project was not reviewed in FY19.

Collaborations and Coordination with Other Institutions

DFT Modeling of Interfaces Prof. Puru Jena

Electron Microscopy Dr. Chongmin Wang

Nuclear Magnetic Resonance (NMR) Studies Prof. Steve Greenbaum

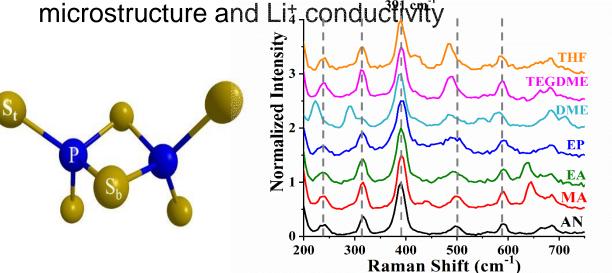
Remaining Barriers and Challenges

- Integrate high voltage cathodes (e.g., Ni-rich NMC) into all-solid-state containing a sulfide SE and Li metal anode. Explore how cell chemistry and configuration (e.g., stack pressure, SE thickness, and Li excess) impact performance.
- 2. Quantify distribution of products obtained form solvent-mediated synthesis of sulfide SEs. Determine how final material's structure and properties are influenced by key synthesis parameters including: (i) precursors, (ii) solvent, and (iii) thermal treatment.
- 3. Probe the various chemical and electrochemical reactions which occur at the cathode/electrolyte interface during open-circuit storage and charge/discharge cycling. Utilize *in-situ* and *ex-situ* spectroscopy methods to study interphase reaction layers.
- 4. Address the issue of chemo-mechanical stability between SE and cathode. Determine fundamental materials parameters/properties to improve wettability between SE-cathode/Li interfaces

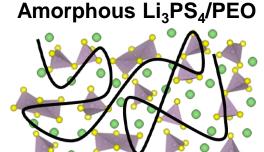
Any proposed future work is subject to change based on funding levels

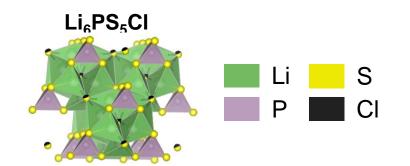
Proposed Future Research

- 1. Optimize slurry casting procedure to produce sulfide SE layers ≤ 30 µm thick. Integrate thin SE layers into SSBs containing planar cathodes or composite porous cathodes and test SSB cells
- 2. Establish structure/function correlations for sulfide SEs. Explore how amorphous vs. polycrystalline SEs affect important cell properties (e.g., critical current density, Li dendrite propagation, and interfacial resistance). Combine electrochemical measurements with various structural characterization tools (e.g., solid-state NMR and neutron scattering).
- 3. Develop cathode interfacial coatings to improve performance of SSBs with sulfide-based SEs. Coating techniques to be explored include: (i) solution-based methods (e.g., sol-gel), (ii) RF sputtering, and (iii) atomic layer deposition (ALD).
- 4. Develop operando methods to for monitoring chemo-mechanical stability of solid-elelctrolyte cathode interfaces


Technical Approach:

Summary


Develop solvent-mediated synthesis routes for sulfide-based SEs


- Incorporate polymer binders through *in-situ* and *ex-situ* approaches to improve SE processability
- Utilize various characterization methods (e.g., Raman, XRD, and XPS) to understand how synthesis parameters affect structure and Li⁺ conductivity **Accomplishments**:

- Proposed general reaction mechanism for lithium thiophosphate compounds prepared through solvent-mediated synthesis routes.
- Synthesized a new class of amorphous Li₃PS₄/PEO composite solid electrolytes. Established how thermal annealing affects

Crystalline **B**-Li₃PS₄

Ongoing work:

- Study cathode/electrolyte interfaces in all-solidstate batteries (e.g., Li/Li₃PS₄/LiCoO₂)
- Synthesize argyrodite and halide-doped sulfide SEs with Li⁺ conductivity ≥1 mS/cm at 25°C
- Develop slurry casting methods to produce SE films ≤30 µm thick